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The dynamics of towed flexible cylinders 
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A ship, towing a heavier-than-water cable with a neutrally buoyant slender cylinder 
attached to the downstream end of the cable, is considered. The neutrally buoyant 
element contains a sonar array. Linear changes in the ship’s velocity cause 
perturbations of both the cable and cylinder. The form of transverse vibrations of the 
neutrally buoyant cylinder was determined in Part 1.  The propagation of 
disturbances along the cable is investigated in this paper. In  particular, the 
effectiveness of the cable at isolating the sonar array from forcing due to unsteady 
ship motion is examined. 

The cable and cylinder are found to be stable under constant towing conditions. 
It is therefore appropriate to investigate their response to forcing. Meanderings in the 
ship’s track produce transverse displacements of both the cable and the cylinder. 
These transverse oscillations entirely decouple from any in-plane motion. The 
propagation of disturbances of frequency w along the cable depends strongly on the 
value of the non-dimensional frequency w1,/U, where 1, is the cable length and U is 
the towing speed, and only weakly on the other cable parameters. The cable acts as 
an effective low-pass filter to transverse oscillations, the amplitude of disturbances 
with non-dimensional frequency greater than 10 being reduced by at least 90% as 
they propagate along the cable. 

Unsteadiness in the ship’s speed can result in in-plane deflections of the cable, and 
vertical oscillations of the cylinder containing the sonar array. In contrast to the 
transverse oscillations a significant proportion of the in-plane disturbances a t  the 
ship travels to the sonar array a t  all values of the frequency. Low- and high- 
frequency analytical forms are derived to explain why this occurs. Perturbations in 
the ship’s position are most effectively transformed into vertical oscillations of the 
array a t  a frequency of 2.8UI1,. The effect of cable properties on transmission along 
the cable is investigated. The transmission again depends on the value of the non- 
dimensional frequency wl, /U.  Parameter changes, which increase the cable critical 
angle, increase the proportion of the disturbance a t  the towing point that is 
transformed into vertical array motion, for a fixed value of wl , /U .  This is explained 
by reference to the low- and high-frequency analytical solutions. 

1. Introduction 
The dynamics of an instrumentation package being towed by a ship are 

investigated. The towed system consists of a long, slender neutrally buoyant 
cylinder, containing a sonar array, attached to  a ship by a heavy tow-cable. When 
the ship maintains a constant velocity the sonar array is straight and horizontal. 
However changes in the ship’s velocity make both the cable and the array deform. 
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We analyse linear departures from the steady towing case. Dowling (1988, hereinafter 
referred to as Part  1 )  determines the form of linear displacements of the neutrally 
buoyant cylinder. The propagation of disturbances along the cable is investigated in 
this paper. One aim of the work is to provide a simple means by which the shape of 
the towed system can be predicted from the ship’s path. An ideal cable would 
attenuate disturbances, in order to isolate the sonar array from the effects of 
unsteady ship motion. The way in which the cable parameters should be chosen to 
enhance this attenuation is investigated. 

The cable, being heavier than water, is inclined a t  an angle to the towing direction 
over most of its length. I ts  downstream end, however, must be horizontal in the 
mean, as it is attached to a neutrally buoyant cylinder. Pa‘idoussis (1966, 1968, 1973) 
derived an equation for the linearized transverse displacement of a towed neutrally 
buoyant element. Kennedy & Strahan (1981) modified Pa’idoussis’ equation in an 
ad hoc way to describe the propagation of horizontal transverse displacements along 
a hcavy cable. They just changed the drag coefficients in Pai’doussis’ equation to 
values more appropriate for a cable a t  an appreciable angle to the flow. This does not, 
of course, account for all the effects of cable inclination. But Kennedy & Strahan 
were able to obtain some agreement between such calculations and their experimental 
results. This approach is not suitable for in-plane oscillations where, for a curved 
cable, displacements normal and tangential to the mean cable position couple to 
unsteady tensions. 

In  a series of papers Huffman & Genin (1971) and Cannon & Genin (1972a, b )  
derive equations to describe linear perturbations of a cable in a related problem, a 
tow-cable attached to a heavy mass in air. Their choice of variables makes the 
problem seem rather complicated, since they have four variables describing 
transverse cable motion and five for its in-plane motion. The stability of the towed 
body is investigated and they find it to be always stable. Schram & Reyle (1968) 
determine the dynamic response of a cable towing a heavy body to nonlinear 
disturbances of the towing point. They use the method of characteristics to obtain 
a numerical solution. 

We adopt a different approach. The cable motion is described in terms of 
displacements normal and tangential to the mean cable position and the unsteady 
tension. Equations of motion for linear perturbations of the cable from its 
configuration in steady towing are derived in $2. These are a natural extension of 
Pai’doussis’ work, and his equation can be recovered as the specific gravity of the 
cable approaches unity. Transverse oscillations decouple from any in-plane vibration. 
For disturbances with time dependence eiWt the equations may be integrated in a 
straightforward way to  determine the spatial development of cable displacement. 
The form for the deflections of the neutrally buoyant cylinder calculated in Part 1 
specifies the downstream boundary condition for the cable motion. 

The tension in the cable is sufficiently large to ensure that over most of its length 
the mean cable geometry is a straight line, inclined a t  the critical angle to the 
horizontal. This is the angle of inclination for which the mean normal drag and 
gravity forces on the cable balance. Phillips (1949) considered the stability of a cable 
with uniform tension inclined a t  an angle to  an oncoming flow. Zajac (1957) 
investigated the propagation of disturbances down such a cable and Lyon (1962) 
went on to include a linear variation in tension. Our equations for both transverse 
and in-plane motion reduce to Lyon’s when the cable angle is constant and a term 
due to cable weight is neglected. Over the range where the cable inclination is fixed, 
the differential equations for cable motion are sufficiently simple to enable analytical 
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forms to be derived in the limit of low and high frequency. These asymptotic 
solutions are useful when interpreting effects observed in the numerical solutions. 

Transverse cable oscillations are considered in $3, the in-plane motions being 
determined in $4. The stability of the cable and neutrally buoyant cylinder under 
steady towing is investigated by seeing whether free modcs, in which there is no 
perturbation in the position of the upstream end of the cable, grow or decay in time. 
If all the eigenfrequencies have positive imaginary parts, any disturbance decays 
with time and the system is stable. Any eigenfrequency with negative imaginary 
part, however, represents a growing mode making the towed cable and cylinder 
unstable. It is demonstrated that there are no eigenfrequencies in the lower half 52- 
plane and hence the acoustic streamer is stable to towing. It is therefore appropriate 
to investigate its response to forcing. A ship following a meandering track causes a 
transverse motion of the upstream end of the cable. The deflections this produces in 
the rest of the cable are determined in $3.  It is found that a t  low frequencies these 
disturbances propagate down the cable with little attenuation, while at higher 
frequencies they decay. The details of the form of the cable motion are of limited 
interest. What is relevant is how much vibration is transferred from the ship to  the 
sonar array along the cable. We investigate this by calculating the ratio of the 
disturbance a t  the downstream end of the cable to that a t  its upstream end, a t  a 
particular frequency w. This transfer function is found to depend strongly on the 
value of the non-dimensional frequency wl,/U, where 1, is the cable length and U the 
towing speed, and only weakly on the other cable parameters. The magnitude of 
the transfer function decreases as w l , / U  is increased. Disturbances with a non- 
dimensional frequency greater than 10 are reduced in amplitude by at least 90 YO as 
they propagate along the cable. Kennedy & Strahan (1981) measured this transfer 
function in experiments a t  sea. Our calculated form is in very good agreement with 
their data. 

In-plane oscillations of the cable and cylinder are investigated in $4. These can be 
excited by unsteadiness in ship speed which produces a horizontal displacement in 
the position of the upstream cable end. The disturbances propagate down the cable 
and cause both horizontal and vertical displacements of the sonar array. A 
significant proportion of the disturbance at the ship is found to travel to the array 
a t  all frequencies. The low- and high-frequency analytic solutions are used to  explain 
why this occurs. Perturbations in the ship’s position are most effectively transformed 
into vertical oscillations of the array a t  a frequency of 2.8UI1,. The effect of cable 
properties on transmission along the cable is investigated. Parameter changes, which 
increase the cable critical angle, increase the proportion of the disturbance to  the 
towing point that is transformed into vertical array motion, for a fixed value of 
w l J U .  This is explained by reference to the low- and high-frequency analytical 
solutions. 

2. The equations of cable motion 
Consider a cable of radius a,, length l,, towed in the negative x-direction through 

still fluid a t  a speed U with a neutrally buoyant cylinder attached to its downstream 
end. The z-axis is chosen to be vertically downwards. The y-axis is therefore 
horizontal and perpendicular to the direction of motion. Since the cable is heavier 
than the surrounding water, it  is inclined at an angle to the direction of motion over 
most of its length. Let 1 denote arc length along the cable, r(1, t )  the position vector 
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Neutrally buoyant 
cylinder containing 
sonar array 

FIGURE 1.  Typical geometry for a ship towing an array. 

of the cable element 1 a t  time t ,  and s the tangential unit vector, s = ar/al, as shown 
in figure 1. Then the equation of motion of the cable is 

A = r is the acceleration of the cable element, where the dot denotes a time 
derivative. (T is the specific gravity of the cable and po the density of water. 
po~7taE is therefore the mass per unit length of cable. g is the acceleration due to 
gravity. T( l ) ,  the tension in the cable, changes along its length. The force exerted on 
unit length of cable by the surrounding fluid is denoted by F. This force F is made up 
of a buoyancy term -po nag g, a virtual mass term equal and opposite to the force 
required to accelerate the fluid, and drag which opposes the velocity of the cable. We 
take the virtual mass term to be - p o m ;  A ,  where A ,  is the normal cable 
acceleration, A ,  = A - ( A . s ) s .  The drag can be conveniently decomposed into its 
components tangential and normal to the local cable axis. We are interested in cable 
oscillations with frequencies very much lower than the typical vortex shedding 
frequency from the cable. It is therefore appropriate to  use a quasi-static form for the 
drag. As in Part 1 and following Taylor (1952) we introduce 

D, = $Po ( V y  2xa, C, cos i ,  (2.2a) 

and D, = $po 1 ~ 1 ~  ( 2 ~ ,  C, sin2 i + 2 ~ u ,  C, sin i ) ,  ( 2 . 2 b )  

as the tangential and normal components of the drag per unit cable length. u, the 
velocity of the cable element, is equal to i ,  and i, the angle of incidence of the cable 
is defined by 

Iu( cosi = u - s ,  JuI sini = ( u  x s(. (2.3) 

The tangential drag leads to tension in the cable and as discussed in Part 1 the value 
of the tangential drag coefficient can be deduced from measurements of this tension. 
Data suggest C, = 0.0025 to be reasonable. Both form drag and skin-frictional forces 
contribute to the normal drag. The Engineering Sciences Data Item No. 80025 gives 
C, = 1.2 for flow past an inclined cylinder a t  effective Reynolds numbers less than 
3 x lo5. There is less evidence to determine an appropriate value for the drag 
coefficient C,, and as in Part 1 the effect of varying C, in the range 0 < C, < C, will 
be investigated. 
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Substitution for the fluid forces from (2.2) and (2.3) into (2.1) leads to the general 
equation of motion of the cable. Since the fluid forces naturally decompose into their 
components tangential and normal to the cable axis, we will introduce the notation 
w, and v, to denote the components of v tangential and normal to s respectively, i.e. 
us = v - s  and v, = v-u,s.  Cornponents g, = g - s  and g ,  = g-g,s  are defined in a 
similar way. Then the equation of motion for the cable can be rewritten as 

( 2 . 4 a )  

This equation is to be solved subject to boundary conditions a t  1 = 0 and I,. The 
downstream end of the cable is attached to a neutrally buoyant cylinder containing 
the sonar array. Their displacements must be equal at  the junction, i.e. r(Zc, t )  is 
continuous across the join of the cable and the cylinder 

Lr(lC? t)lE$ilzder = O .  (2 .5)  

If the join is so short that it has negligible inertia, the forces acting on it must 
balance. The fluid dynamical forces acting on the junction between two cylinders of 
different radii were discussed in Part 1. The largest fluid force is that due to the 
virtual mass of the cylinder, but even this is small in comparison with the tension 
forces. These are appreciable a t  the upstream end of the towed cylinder because they 
balance the longitudinal drag on the whole cylinder. The condition that the forces on 
the junction of the cable and the cylinder must be in equilibrium therefore reduces 
to a statement that 

[Ts]:;y;;d,r = 0. (2.6) 

Since Is1 = 1, this vector equation implies that T is to be continuous and so is the 
slope of the cylinders’ centreline. 

Equations (2.4)-(2.6) will first be used to determine the mean position of the cable. 
For a constant towing speed U in the negative x-direction, it is appropriate to seek 
a solution in which the cable parameters are constant, v = ( -  U ,  0, 0 ) ,  T = T(Z) and 
s = S = (cos8, 0, sin8) say. Then since there is no acceleration, equation ( 2 . 4 ~ )  
reduces to a condition that the tension, gravity and fluid dynamical forces 
balance : 

= - p 0 ( r  - 1) nut g sin 8 - po U2nu, C, cos 8. (2.7) 
a T  
az 
- 

The normal equation ( 2 . 4 b )  only has one non-zero component. It is in the direction 
( -sin 8, 0, cos 8) and gives 

- d8 
T -  = -po (q - i )na tg  c o s 8 + p , u , ~ ~ ( ~ ~  sin8+nCN) sing. 

dl 

At its downstream end the cable is joined to  a cylinder which is neutrally buoyant. 
The mean position of that cylinder is horizontal and parallel to the x-axis. The 
tension a t  the leading edge of a neutrally buoyant cylinder of radius a,, length I ,  
with a free downstream end was given by Part 1, equation (2.6) as pa nU2C, uA 1,. The 
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FIGURE 2. The mean configuration of the cable and neutrally buoyant cylinder under constant 
towing for C, = 0.0025, C ,  = 1.2, C, = 0.75C,, cr = 2.8, l c / l A  = 3.7,  gl,/u2 = 578, ac/lA = 
4.125 x and aA/ lA = 8.25 x ., ends of the cylinder; ---, straight line at the critical angle 
8, (defined in equation (2.11)). 

mean values of the boundary conditions described by (2.5) and (2.6) are therefore 
simply 

and 

Integration of the differential equations (2.7) and (2.8) from I = I , ,  where 8 and T’ are 
given by (2.9) and (2.10), to 1 = 0 determines the mean position of the cable. A typical 
mean configuration of the cable and neutrally buoyant cylinder is shown in figure 2 
for v = 2.8, C, = 0.0025, C,  = 1.2, C, = 0.75CT, ZJl, = 3.7, ac/lA = 4.125 x lop5 
and g1,/U2 = 578. The parameters of the cylinder are as in Part 1 ;  a,/l,C, = 0.033. 

Equation (2.8) leads to solutions in which d increases rapidly near 1,. Away from 
the junction with the cylinder, the cable soon attains its critical angle at which the 
normal forces on it balance. Then 0 remains constant a t  an angle 6, say. Using the 
condition d8/dl= 0 in (2.8) shows that the critical angle 6, is given by 

T’(1,) = po nU2CT aA I , ,  (2.9) 

S(l,) = 0. (2.10) 

(2.11) 

The straight line 0 = 8, is plotted in figure 2 for comparison with the exact solution 
for &l). It is in excellent agreement with the solution except near the downstream 
end of the cable. 

Now that the mean geometry of the cable and the mean forces on it during steady 
towing have been determined the form of linear perturbations from this configuration 
can be investigated. The position vector r(Z, t )  may be split up into its steady state 
value and a perturbation by writing 

r(1, t) = r(Z, t) + r’(Z, t). (2.12) 

It is convenient to express r’ in terms of 6,  r,~ and 5, perturbations in position along 
and perpendicular to  the mean tangent to the cable ; 

/(z, t )  = (6 cos S- 7 sin 4, 5, 6 sin S+ 7 cos 8). (2.13) 

5 , ~  and 6 are all small quantities and their products may be neglected. 
The instantaneous tangential direction, s, can be obtained from the derivative 
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It is now possible to substitute back and see when A"/A'O' is small. This shows that 
the solution is valid whenever lh2l is large, i.e. for 

For large IhZI, q(2) can be simplified to h /Z .  Then O(2)  = +2hiZ;, A(2)  = h-:Zi, 
and so the asymptotic high-frequency solution is 

[(L) = h-:(L,-L)f-L{R, exp [2ihi(L,-L);]+S, exp[-Bihi(L,-L);]}, (3.19) 

for 0 < L < Lo. The root of hi is chosen so that it has negative imaginary part. 
Again the constants R, and S, are determined exactly by boundary conditions at 

L = 0 and Lo. But for the purposes of obtaining an approximate solution, we note 
that the boundary conditions a t  L = Lo will lead to 

S, - R, exp [4ihi(L, -L0)4], 

This means that when L is appreciably less than Lo the second term in (3.19) will be 
much smaller than the first. Hence 

[(L)  = h - f ( ~ ,  - ~ ) : - 3  R, exp [2ih;(~, - L);], (3.20) 

for 0 < L 4 Lo. The value of the constant R, then follows immediately from the 
upstream boundary condition to give 

[(L) = (1 - L/L,)+@ exp [ - 2ihi {L)  - (L,  - L)~}I. (3.21) 

This approximate asymptotic form is sketched in figure 3 for the large non- 
dimensional frequency SZ = 10. It is in good agreement with the exact solution. 

Figure 3 shows the phase speed of the moderate and low-frequency disturbances 
to be of order unity. In  terms of dimensional parameters this means that disturbances 
propagate down the cable with a phase speed comparable with the towing speed. 
Ketchman's (1981) approximate method of determining the vibration of an inclined 
cable is therefore inappropriate for this frequency range. Since he assumes that 
disturbances travel a t  the faster speed (T/po ma:); to obtain their amplitude by an 
energy argument. 

To summarize, low-frequency disturbances propagate along the cable with little 
attenuation, while the amplitude of high-frequency disturbances is significantly 
reduced as they travel down the cable. The cable acts as an effective low-pass 
filter. 

The actual form of the transverse displacement of the cable is of limited interest. 
What is relevant is how much vibration is transmitted along the cable from the 
towing ship to the cylinder containing the sonar array. This is described by the ratio 
T = [ (Lc) / t (0) .  Since the displacements of the cable and cylinder are equal a t  their 
junction (boundary condition (3.2)), [(L,)  is the same as the displacement of the 
leading edge of the cylinder. In Part 1 the transverse vibration of the cylinder was 
given in terms of the motion of its leading edge. The transfer function T and the 
result of Part 1 are therefore all that is needed for a complete description of the array 
motion in terms of the ship's path. 

In  Part 1 the value of the normal drag coefficient C, was found to have a 
considerable influence on the propagation of disturbances along the array. The cable 
is different. Since it is negatively buoyant and inclined a t  an angle to the flow, its 
normal drag is mainly proportional to C, sine which is much larger than C,. 
Figure 4 shows the transfer coefficient U to be virtually independent of C,, 
which is reassuring in view of the uncertainty in the value of C,. 

It is appropriate to investigate how the cable parameters influence this transfer 

much greater than unity. 
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FIGURE 4. The effect of changes in C, on the transfer of transverse oscillations along the cable. 
The other cable and cylinder parameters are as in figure 2.  - - - -  -, C, = O.25CT; ~ , C, = O.75CT. 

function. It is not surprising that U is found to depend strongly on a non-dimensional 
frequency Q, with 

d = QL,, (3.22) 

or in terms of the dimensional frequency w 

d = wl, /U.  (3.23) 

Figures 5-8 show the effect of varying the cable parameters for a given cylinder 
geometry and fixed drag coefficients. In these diagrams aA = 8.25 x lOT5Z,, 
C, = 0.0025, C,  = 0.75CT and C, = 1.2. 
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FIGURE 5 ( a ,  b ) .  For caption see page 548. 

Figure 5 shows the effect of changes in g, the specific density of the cable. It 
demonstrates that variations in the density of a negatively buoyant cable only have 
a slight effect on the amplitude of the disturbances transmitted down the cable, with 
a heavier cable producing slightly more attenuation at  lower frequencies and less a t  
higher frequencies than a lighter cable. The phase of the transfer function is plotted 
in figure 5 ( b )  as a function of d. The slope of the curves shows that a t  low and 
moderate frequencies the disturbances propagate down the cable with a phase speed 
of the order of the towing speed, travelling slightly faster along the heavier cable. 
The phase speed is faster for higher frequencies. A comparison of figure 5 (a)  and ( c )  
shows that a heavier-than-water cable produces less attenuation at low frequencies 
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than a neutrally buoyant cable of the same length, but more a t  high frequencies. The 
cross-over occurs at a non-dimensional frequency, d, of about 7 .  

The effect of altering the cable length I, is shown in figure 6. Again the three curves 
are very close, demonstrating that the transfer function at fixed d is only slightly 
modified by significant changes in I,. The abscissa d = wl,/U is also a function of 
I,. It accounts for the main effect of changes in cable length on the transmission of 
disturbances of a given dimensional frequency w along the cable. For a fixed value 
of w ,  increasing 1, increases b and enhances the attenuation produced by the cable. 
Conversely, a shorter cable produces less attenuation. 
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FIGURE 6. The effect of changes in L, = l c / l A ,  the non-dimensional length of the cable, on the 
transfer of transverse oscillations along the cable. (T = 2.8, glA/U2 = 578, ac/lA = 4.125 x The 
cylinder geometry and drag coefficients are as in figure 5. 

Figure 7 shows the effect of changes in the Froude number. The three curves show 
that at a fixed fi there is little effect even when the towing velocity is doubled or 
halved. Again the main dependence is described through the variation of d with U .  
For a fixed frequency w ,  an increase in the towing speed, U ,  decreases fi and the 
attenuation across the cable is reduced. Figure 8 shows that the cable diameter only 
has a weak effect. 

Kennedy & Strahan (1981) measured the transmission loss across a cable towing 
an array. Their data is reproduced in table 1 and provides an appropriate test for this 
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FIQURE 7. The effects of changes in a = glA/U2,  the inverse-square Froude number, on the transfer 
of transverse oscillations along the cable. v = 2.8, lc/ZA = 3.7, uc/ZA = 4.125 x The cylinder 
geometry and drag coefficients are as in figure 5. 

theory. They choose to express the phase of U in terms of a parameter c* defined 
bY 

(3.24) 
!5 c* = -- 

arg T ' 

For consistency the same notation is adopted here. The argument of U is multivalued 
making c* multivalued too. The rtesults in figures 5-8 suggest that the argument of 
T in radians is greater than -52. This has been used in the presentation of the 
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FIGURE 8. The effects of changes in cable radius, E = uc/ZA, on the transfer of transverse oscillations 
along the cable. u = 2.8, l c / l A  = 3.7, qlA/U2 = 578. The cylinder geometry and drag coefficients are 
as in figure 5. 

theoretical results by, somewhat arbitrarily, choosing the branch of arg U such 

27c-Sz > argT > -sZ. (3.25) 
that 

Satisfactory comparison with the experimental data suggests that this is also the 
branch chosen by Kennedy & Strahan. They used a 16 mm steel cable, and so the 
theoretical curves in figure 9 are for a, = 8 mm, u = 7.8 and a range of values of U 
and I , .  But, as demonstrated, by figures 6 and 7 such changes in vel_ocity and cable 
length only lead to small changes in the transfer function U at  fixed 52. Lowering the 
speed or shortening the cable increases the attenuation at moderate values of B. The 
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theoretical curves in figure 9 are for the two extreme cases in the experimental data. 
Curve (i) is for the lowest experimental speed and the shortest length of cable, while 
curve (ii) is for the highest experimental speed and the longest cable length. For 
perfect agreement all the experimental points should lie between these two 
theoretical curves, and indeed this is nearly satisfied. 

Kennedy & Strahan compared their experimental results with a simple theory in 
which they solve the equation for a neutrally buoyant cable. One effect of negative 
buoyancy is that the cable is inclined a t  a finite angle to the towing direction and, 
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1, U w/2x 
(m) ( 4 s )  (mHz) IT1 C* 

1186.9 3.10 0.97 0.8223 1 .oo 
1186.4 3.03 2.07 0.3804 1.10 
1186.0 2.98 3.79 0.1075 1.05 
1185.7 2.94 6.84 0.0085 1.18 
1193.8 5.10 0.37 0.9671 1.19 
1194.1 5.25 1.10 0.8313 0.90 
1193.9 5.18 2.20 0.6004 1 .oo 
1193.5 5.00 4.39 0.1922 1.10 
1192.6 4.72 8.18 0.0243 1.33 
1196.0 6.35 1.10 0.9916 1 .oo 
1195.9 6.25 1.96 0.7091 0.97 
1195.9 6.26 4.03 0.3293 1.03 
1196.1 6.45 7.81 0.0727 1.10 
1193.9 5.15 0.97 0.9442 0.84 
1193.8 5.10 2.20 0.5683 1.03 
597.1 5.28 2.32 0.8255 0.96 
596.9 5.15 4.39 0.5759 1.05 

TABLE 1. Kennedy 81, Strahan’s experimental results 

as shown by equation (2.2b), experiences a considerably larger normal force than a 
similar neutrally buoyant cable. Kennedy & Strahan attempt to include this aspect 
of negative buoyancy by using an artificially large value of C, in their equation for 
a neutrally buoyant cable. The value of C, was adjusted to fit the data. They found 
that a certain value of C, gave good agreement between measured and calculated 
amplitudes, but a different C, was required for the phases to agree. No such 
empirical fit has been made in the results presented here. The values of the drag 
coefficients have been chosen on physical grounds, and so the correlation between 
theory and experiment is encouraging. 

Having demonstrated that the theoretical description of vibrations in a horizontal 
plane is in reasonable agreement with measurements we will go on to consider 
oscillations in a vertical plane. 

4. Vertical oscillations of the cable 
When the cable vibrates in the (x, 2)-plane, normal and longitudinal cable 

displacements couple and are influenced by changes in tension. Small changes in the 
ship’s speed provide a forcing mechanism for these oscillations, since unsteady ship 
motion produces fluctuations in the horizontal position of the upstream end of the 
cable. These disturbances propagate down the cable and, as we will see, can cause 
significant horizontal and vertical displacements of the neutrally buoyant cylinder 
containing the sonar array. 

The tangential cable displacement a t  a non-dimensional length L along the cable, 
[ (L) ,  is related to its normal displacement in the (x, y)-plane by equation (2.21) ; 



554 A .  P. Dowling 

Fluctuations in i (L) ,  the non-dimensional cable tension, are related to the in-plane 
displacements by (2.22) 

-in{ sin8cos8+sin8 -+[- , (4.2) (Z 31 
while { ( L )  satisfies the second-order differential equation (2.23) 

+ c N e  iQ{(1+sinz8)-i&sinecosO+cos0-- . (4.3) 

For a particular frequency Q, the oscillations of the cable in the (x, y)-plane may be 
determined by an integration of equations (4.1)-(4.3) with appropriate boundary 
conditions a t  the end of the cable. 

The downstream end of the cable is attached to the cylinder, and boundary 
conditions (2.5) and (2.6) state that the displacement and tension force are to be 
continuous across this junction i.e. 

[ - dL dr j l  

and 

{(L,) is the complex amplitude of the normal displacement a t  the end of the cable. 
Hence it follows from (4.4) that 

W C )  = Y(0).  (4.7) 

Y ( X ) ,  the normal displacement a non-dimensional distance X along the cylinder, has 
been evaluated in Part 1 equation (2.38) and is given by 

(iQb(X, - X ) ) n  
Y ( X )  = P c 

n=o n!(n+b- l ) !  . 

All lengths have been non-dimensionalized with respect to the cylinder length, and 
so X ,  = 1 - aA/ZA C,, b = 2iQaA/lA C,  + C,/C,. P is an arbitrary constant to be 
determined from the boundary conditions. 

The tangential direction a t  the cable end is given by (A 5 )  and (A 6) with 6 = 0. 
Hence the boundary condition (4.5) is equivalent to 

(4.9) 

The tangential component of (4.4) shows that an in-line displacement of the 
downstream end of the cable results in a corresponding displacement of the cylinder 
and towed array. Equations (4.1) and (4.2) were derived with the cable in mind, but 
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they can be applied equally well to the neutrally buoyant cylinder provided we put 
L = X, (T = 1, 6 = 0 and 6 = cA = uA/l,. The cylinder has a simple mean geometry: 
it is straight and horizontal. This en?bles these equations to be integrated 
immediately. Equation (4.1) shows that ( is constant along the cylinder while (4.2) 
describes the linear increase in thc amplitude of the unsteady tension along the 
cylinder. It shows that a t  the leading edge of the cylinder 

.i = ( ~ e ;  - 2i0;2EA c,) i. (4.10) 

A third downstream boundary condition for the cable then follows from (4.4) and 
(4.6) and is 

~ ( L J  = ( ~ 2 e i  - 2ii2cA c,) [ ( L ~ ) .  (4.11) 

The upstream end of the cable is assumed to be always on the sea-surface z = 0. 
Hence 

f;sin$+ij c o s ~  = 0 a t  L = 0, (4.12) 

and in a particular problem the horizontal displacement of the cable a t  the towing 
point will be given, i.e. 

[ cos 8 - i sin 6 is specified at L = 0. (4.13) 

For a particular non-dimensional frequency 0, equations (4.1)-(4.3), with 
boundary conditions (4.7), (4.9), (4.11)-(4.13), specify a mixed boundary value 
problem for the in-plane cable deflections. This can be solved in a straight-forward 
way by numerical integration of the equations. 

Before discussing the forced response of the cable we will investigate the free 
modes to see whether the cable and cylinder are stable under constant towing 
conditions. A constant towing velocity means no perturbation in the position of the 
upstream end of the cable, and so 

f c o s ~ - +  sine = 0 at L = 0. (4.14) 

The eigenfrequencies are the values of 0 for which (4.14) is satisfied. If all these roots 
have positive imaginary part, all the eigenmodes decay in time and the cable and 
cylinder are stable to towing. If however one or more of the roots of (4.14) lie in the 
lower half 0-plane, disturbances grow in time and the cable and cylinder are 
unstable. 

The eigenfrequencies have been investigated numerically for the usual geometry ; 
aA = 8.25 x 10P51A, g1,/U2 = 578 and a cable of dimensions I, = 3.71,, uc = 4.125 x 
10P51A, (T = 2.8 with drag coefficients C, = 0.0025, C, = 1.2 and two values for 
C, ; qN = 0.25C, and C ,  = O.075CT. The contours Re (((0) cos 6-$(0) sin #) = 0 and 
Im ([(O) cos$-i(O) sin@ = 0 have been plotted in the lower half 0-plane. They 
do not intersect and so there are no eigenfrequencies with negative imaginary part. 
The towed cable and cylinder are therefore stable to in-plane perturbations. 

Since the cable and cylinder are stable it is appropriate to investigate their response 
to forcing. We consider the ship to be in unsteady motion in the negative x-direction 
with the ship’s speed having a small perturbation about its mean value U .  For a 
linear perturbation the response at each frequency w may be analysed separately. 
Also, since the perturbation equations are linear, the non-dimensional amplitude of 
the displacement of the towing point may, without loss of generality, be taken to be 
unity, making the boundary condition (4.13) 

[cose-rj sine = 1 at L = 0. (4.15) 
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The two upstream conditions (4.12) and (4.15) combine to give 

{= cos6, 1 ~ /  =-sine at L = 0. (4.16) 

These conditions together with the downstream boundary conditions (4.7), (4.9) and 
(4.11), and the differeFtial equations (4.1)-(4.3) completely specify the cable 
response. In  particular ( ( L )  and $(L)  may be determined by numerical integration. 

An element a t  an arc length 1 from the ship is perturbed from its steady towing 
position by ( ~ ’ ( 1 ,  t ) ,  0, ~ ’ ( 1 ,  t ) ) ,  where x’(1, t )  = Re (Z,P(L) eiwt), z’(1, t )  = Re (lAi(L) eiwt), 
with L = 111, and 

i ( ~ )  = ~ ( L I  cose-rj(~) sin8, i ( ~ )  = l ( ~ )  sin B + ~ ( L )  cos6, (4.17) 

for 0 < L < L,. The vibration of the cylinder is described by 

i ( L )  = i (Lc) ,  z”(L) = Y(L-LC) for Lc < L < LC+ i - e A / C T j  (4.18) 

where Y ( X )  is defined in (4.8). The magnitude and phase of the complex 
displacements i ( L )  and i (L )  are plotted in figure 10 for three different values of 52 and 
the usual cable and cylinder geometry (aA = 8.25 x iO-51A, g1,/U2 = 578, 1, = 3.71,, 
a, = 4.125 x 10-51,, v = 2.8, G, = 0.0025, C, = O.75CT and C, = 1.2). Before 
discussing the structure displayed in these graphs it is appropriate to investigate the 
limits of low and high frequency where analytical expressions for the displacements 
can be derived. 

Over most of its length the mean cable iQclination is constant and equal to the 
critical angle 6,, and then the equations for [(L)  and $(L)  simplify considerably. Let 
us suppose that 0 = 6, is a good approximation to the actual cable position for L in 
the range 0 < L < Lo. 

When 6 is constant, (4.1) simply states that l is independent of position. Hence 
after applying the boundary condition (4.16) we can deduce that the in-line - - _  - 
deflections are given by 

f ( ‘ ( ~ )  = cose, for 0 < L < L,. (4.19) 

As discussed in $3, the differential equation (2.18) for the mean tension has 
constant coefficients in the range 0 < L < Lo. It can be readily integrated to give (see 
equation (3.8)), 

T ( L )  = T(L, )+[ (c~ - I )E% sinQ,+eC, cosS,](L,-L). 

When this and (4.19) are substituted into (4.3) it  simplifies to 

(4.20) 

$(L)  satisfies an inhomogeneous second-order differential equation. Ll, f 2 ,  g, and 

?(LO) 
(v - 1 )  e2a sin 6, + eCT cos 6, ’ 

h, are all constants: 
L, = Lo+ (4.21 a )  

(v - 1 ) ea sin 6, + (C, + 2C, sin 8,/7c) cos 6, 
> (4.21 b )  

f 2  = (cr-1)ea sin&,+C, cos6, 

(4.21 c) 

((T + 1) e Q 2  -iQ(C,(I + sin2 6,) + 2C, sin 6,/7c) 
(~r- i )sol  sin$,+C, C O S ~ ,  

h, = (4.21 d )  
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When C, is set equal to zero and the gravity term (v- 1 )  eol sin 6, is neglected, Lyon's 
(1962) equation for the in-plane deflection of a string is recovered from (4.20). 

The particular integral of (4.20) is { (L )  = g2 /h2 .  The asymptotic forms of the 
general solution of a similar equation were evaluated in $3. I n  particular, (3.11) 
shows the low-frequency asymptotic solution to be 

I h, 
+S,(L,-L)l-fz +&, (4.22) 

for 0 < L < Lo. R, and S, can be determined precisely from boundary conditions at  
L = 0 and Lo. But calculation of f(L,) requires a numerical integration of equations 
(4.1)-(4.3) over a region near the downstream end of the cable where 6 varies rapidly. 
Instead we argue, as we did in $3, that since f2 is large and positive the second term 
in (4.22) is very much smaller than the first once L is appreciably less than Lo. This 
means that { (L )  simplifies to 

{ (L )  = R, l - A ( L l - L )  +', (4.23) 

Lo. The remaining constant R, may then be evaluated from the 

i ;2 I i2 
in the range 0 < L 
upstream boundary condition (4.16) to give 

(4.24) 

The expressions for l (L )  and { (L )  in (4.19) and (4.24) respectively may be combined 
to calculate 2(L) and z"(C) from (4.17); 

2(L) = 1 +sin 6, - (". +h2 sin 0,) L,  ( 4 . 2 5 ~ )  
f 2  

1.. z"(L) = - cos 6, (". +h12sin 0, (4.25 b )  

This low-frequency asymptotic form is plotted in figure 10 for comparison with the 
exact solution. There is good agreement for Q = 0.1. 

The low-frequency results have a simple physical interpretation. When the 
parameters f,, g2 and h, in (4.25) are rewritten explicitly, the expressions for 2(L) and 
i (L)  become 

2iQ(C, +CD sin 6,/7c) L sin2 0, 
(g - 1 )  ea sin 6, + (C,  + 2CD sin 8,/7c) cos 6, ' 

2(L) = 1 -  (4.26a) 

and 
2iQ(C, + C, sin 6,/7c) L sin 8, cos 6, 

( B -  1)  eol sin 8, + (c, + 2C, sin 6,/7c) cos e, ' 
' 

i ( L )  = (4.26 b )  

for small values of SZ. We will now demonstrate that these displacements correspond 
to a quasi-static oscillation in which the cable remains straight a t  the appropriate 
instantaneous critical angle. The cable follows the displacement of the towing point 
and its inclination alters as changes in the towing velocity change the critical angle. 
For such a motion the perturbation in displacement a distance 1 along the cable 
would be given by 

%'(I, t )  = ~ ' ( 0 ,  t )  -6; I sing,, ~ ' ( 1 ,  t )  = 6; I cos S,, (4.27) 

where 0; denotes a change in the critical angle. 8; will now be evaluated to show that 
these expressions are identical to those given in (4.26). 



558 

6 

4 -  

2 -  

A .  P. Dowling 

I , , , , I , . , , I , , , , I , , , ,  

- 

R = 1.0 - 

1.1 

1 .o 

0.9 
&@ I YO) I 

0.8 

0.7 

0.6 

0.5 

Phase f(L) 
-phase f(0) 

0 1 2 3 4 5 
L 

The critical angle for a towing speed U is given in equation (2.11) : 

The change in critical angle, due to a small change in the towing speed from U to 
U + u', can be found by differentiating this equation 

2(cr- 1) cos 6, a, g / U 2  U' 
(4.28) 8'=- 

(v- 1)  sin Oc a, g / U 2  + (c, + 2c, sin OC/n) cos 8, U .  
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FIGURE 10. Plots of the variation in the magnitude and phase of the in-plane displacement of the 
cable and cylinder as a function of L,  the non-dimensional arc length from the towing point for 
three values of Q. C, = 0.0025, C, = 1.2, C ,  = O.75CT, u = 2.8, l c / l ,  = 3.7, g1,/U2 = 578, ac/l ,  = 
4.125 x ( a )  The horizontal, and ( b )  the vertical displacements are given 
by ~ ' ( 1 ,  t )  = Re ( l , i (L )  eiwt), ~ ' ( 1 ,  t )  = Re (l,i(L) eiwt), with 1 = LZ,, o = QU/Z,. The cylinder 
extends from L = 3.7 to L = 4.7. ---, low-frequency asymptotic form (equation (4.25)) ; - - - - -, high- 
frequency asymptotic form (equation (4.34)). 

and aJ1, = 8.25 x 
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Equation (2.11) may be used to rewrite the numerator in terms of C, and C,, to 
give 

(4.29) 2(CN + C, sin 8,/n) sin 8, U' 8' = - 
((T - 1 )  sin 8, a, g/U2 + (c, + 2c, sin 8,/7c) cos 8,U ' 

In  the particular case considered here x'(0, t )  = Re ( I A  eiwt) and u' = Re ( -iuZA eiwt). 
Using (4.29) in (4.27) therefore shows that 

2iQ(C, +C, sin 8,/7c) L sin2 8, 
((T - 1 ) ECL sin 8, + (CN + 2c, sin 8,/7c) cos 8, ' i ( L )  = 1 -  (4.30a) 

(4.30 b )  

This is identical to (4.26) showing that the low-frequency solution of the differential 
equation does indeed describe the quasi-static displacements evaluated here. 

For large s2, the complementary function of the second-order differential equation 
(4.20) is given approximately by a WKB method in the way outlined in $3. By 
comparison with (3.19) 

2iQ(C, + C, sin 8,/7c) L sin 8, cos 6, 
((T- 1)  CCL sin 8, + (C, + 2C, sin 8,/7c) cos 8, . Z(L) = 

{(L) - hi$( L, - L)fpifz {R, exp [2iht(L, - L);] + S,  exp [ - 2ihi(L, - L);]} + &, (4.31) 

for 0 < L < Lo. The root of hk is to be chosen so that it has negative imaginary 
part. 

Rather than apply boundary conditions a t  Lo to evaluate R, and S,  exactly, we 
again note that for L appreciably less than Lo the second term in (4.31) is much 
smaller than the first. Hence 

h2 

(4.32) 

for 0 < L 4 Lo. R, may be found from the upstream boundary condition (4.16) to 
give 

(I-L/L,)+$~ e x p [ - ~ i h % { ~ ~ - ( ~ , - ~ ) t } l .  (4.33) 

The expressions for g(L) and i ( L )  in (4.19) and (4.33) respectively may be combined 
to calculate i ( L )  and i (L )  from (4.17) 

i ( ~ )  = cos28,-5sin~,+ s i n ~ , ( 1 - ~ / ~ , ) + - ~ ~ 2  
1 1  

x exp[-2ih",~:-(L,-L):}l, (4.34a) 
h2 

1 1  

x exp [ - 2ihi{~: - (L ,  - L):)]. (4.343) 

These expressions are plotted in figure 10 for comparison with the exact solution and 
the agreement is good. 

Figure 10 shows the transmission of in-plane oscillations along the cable to be quite 
different from the transmission of transverse oscillations investigated in $ 3. The cable 
acts as a low-pass filter for transverse deflections, high-frequency oscillations being 
effectively attenuated as they propagate down the cable. Hence little horizontal 
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array motion would be expected a t  moderate and high frequencies. The situation is 
quite different for vertical fluctuations since figure 10 shows there to be appreciable 
transmission along the cable for all frequencies. 

The asymptotic form (4.34) can be used to calculate transmission of in-plane 
vibrations a t  high frequencies. The exponential terms in (4.34) decay rapidly away 
from L = 0, leaving only the constant terms. For typical cable parameters sine, is 
much bigger than gJh,  and so for L $ 0  

$(L)  - cos2 e,, Z ( L )  - sin 6, cos 6,. (4.35) 

The derivation of the high-frequency asymptotic form demonstrates how these 
constant terms arise. HorizontalA unit forcing of the upstream end produces a 
longitudinal cable displacement E(0) = cos 6, and a normal displacement i ( 0 )  = 
-sine, (see equation (4.16)). Since the cable is straight the tugging produced by 
the in-line displacement is the same all along the cable, as shown by (4.19). While 
equation (4.33) shows that a t  high frequencies the normal displacement is 
significantly attenuated as disturbances travel down the cable. Hence, a t  an 
appreciable distance along the cable, the remaining displacement is cos 6, a t  an angle 
8, to the horizontal. Resolving this vertically and horizontally leads to displacements 
of the form shown in (4.35). 

The detailed form of the vibration of the cable is of limited interest. What is 
relevant is how much vibration is transmitted from the towing ship to the sonar 
array along the cable. This is described by the two ratios $(L,)/$(O) and i(L,)/$(O). 
These transfer functions are plotted in figure 11 as a function of a non-dimensional 
frequency 0, defined by a = szL,. (4.36) 

In terms of the dimensional frequency w 
- 

sz = wl, /U.  (4.37) 

$(L,) gives an in-line perturbation to the leading edge of the cylinder. This results 
in a uniform in-line displacement of the whole array as described by (4.18). The 
transverse displacement of the leading edge of the cylinder, Z(L,), produces waves 
that propagate along the cylinder in the way determined in Part 1. 

The low- and high-frequency asymptotic forms for the cable displacement were 
derived for positions away from the cable end. But figure 10 shows that they even 
give a reasonable approximation to the displacement at the downstream end of the 
cable, and we will use them here to interpret the numerical results for the transfer 
function. Equations (4.30) and (4.35) imply that 

f o r a  4 1, (4.38) Z”(LcJ - 
$(o) 

zifi sin B, cos @,(c, + C, sin B,/n) 
(g - 1 )  CCL sin 6, + (c, + 2 ~ ,  sin e,/n) cos 6, 

- 

and (4.39) 

Figure 11 shows that the numerical solution for IZ(L,)I increases linearly with 6, 
for small values of d. This is in agreement with the low-frequency asymptotic form 
(4.38). At high frequencies the two transfer functions $(L,)/G(O) and z”(L,)/O(O) are 
found to be practically independent of frequency, as predicted by the high-frequency 
asymptotic form in (4.39). 

The transfer function for the vertical displacement, as shown in figure 11, has a 
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maximum a t  a non-dimensional frequency of about 2.8. Returning to dimensional 
parameters, this means that perturbations in the ship's position are most effectively 
transformed into vertical oscillations of the array at a frequency w - 2.8UI1,. Towed 
arrays have been observed to execute oscillations of considerable amplitudes with 
frequencies of this order. 

The transfer functions i ( L c ) / i ( 0 )  and Zn(Lc)/i(0) are plotted in figure 11 for two 
different values of the normal drag coefficient C,. The two curves overlie showing 
that the value of C, has little influence on the cable motion. 
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FIGURE 12. The effect of changes in CT, the specific density of the cable, on the transfer of in-plane 
oscillations along the cable. 1JlA = 3.7, glA/U2 = 578, aJIA = 4.125 x 
C, = 0.0025, C, = 0.75CT with C, = 1.2. 

and aA/lA = 8.25 x 

Figures 12-15 demonstrate the effect of varying the cable parameters for a given 
cylinder and fixed drag coefficients. In these diagrams aA = 8.25 x 10T5ZA, 
C, = 0.0025, C, = 0.75CT, C, = 1.2 and the cable properties are varied. It is 
interesting to note that the non-dimensional frequency, a t  which the transfer 
function for the vertical displacements is maximal, is the same in all the diagrams. 
It is uninfluenced by these differences in the cable parameters. 

Figure 12 shows the effect of changes in u, the specific gravity of the cable. The 
magnitude of the vertical vibration transmitted along the cable a t  a particular 



564 A .  P. Dowling 

l , . , . l , , , # l * , , ,  

1.0 - 

0.8 - 

0.6 - 
W C )  Iml 

0.4 - 

0.2 - 

0 1 " " l " " l " "  
0 5 10 15 

- 

- 

- 

- 

20 

i(L,) I a(0) I 

1 .O 

0.8 

0.6 

0.4 

0.2 

0 
0 5 10 15 20 

B 
FIGURE 13. The effect of changes in L, = l c / l A ,  the non-dimensional length of the cable, on the 
transfer of in-plane oscillations along the cable u = 2.8, gl,/Uz = 578, ac/ lA = 4.125 x The 
cylinder geometry and drag coefficients are as in figure 12. 

frequency is found to increase as the density of the cable is increased. This could have 
been anticipated from the high-frequency asymptotic form (4.39) which gives 
;(I+) = G ( 0 )  sine, case, for large values of Q. An increase in the cable density, for 
fixed values of the other parameters, has the effect of increasing the critical angle 
6,. It therefore follows that a denser cable leads to more vertical displacements of the 
array a t  high frequencies. 

Figure 13 shows that changes in the cable length have virtually no effect on the 
transmission across the cable a t  a fixed non-dimensional frequency. This is consistent 
with our low- and high-frequency asymptotic forms in which G(Lc)/G(0) and 
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FIGURE 14. The effect of changes in u = g1,/U2, the inverse-square Froude number, on the 
transfer of in-plane oscillations along the cable, u = 2.8, l c / l A  = 3.7, aJ1, = 4.125 x The 
cylinder geometry and drag coefficients are as in figure 12. 

i (Lc ) / i (0 )  are independent of L, for a fixed value of 6. It should be remembered 
that G? = wlc/U. Hence, when investigating the propagation of disturbances of a 
particular dimensional frequency w ,  changes in 1, change the appropriate value of 
d. How this affects the amplitude of the transmitted vibration will depend on the 
actual values of d. 

The effect of altering the Froude number is shown in figure 14. When the towing 
velocity U is increased, the amplitude of the vertical vibration transmitted along the 
cable at fixed d decreases. Again this can be explained by reference to the low- and 
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FIQURE 15. The effect of changes in cable radius, IZ = ac/lA, on the transfer of in-plane oscillations 
along the cable. v = 2.8, l J I A  = 3.7, g lA/UZ = 578. The cylinder geometry and drag coefficients are 
as in figure 12. 

high-frequency asymptotic forms, and by noting that an increase in velocity tends 
to reduce the critical angle. For a fixed frequency o, a change in U will also shift the 
non-dimensional frequency d = wl , /U .  

Finally figure 15 demonstrates the influence of the value of the cable diameter on 
the transfer function. Once again the same trends are observed. An increase in the 
cable diameter leads to a larger critical angle, and hence to an increase in the 
amplitude of the vertical vibration transmitted through the cable to the sonar 
array. 



Dynamics of towed Jlexible cylinders. Part 2 567 

5. Conclusions 
An analytical expression was obtained in Part 1 relating the linear transverse 

deflection of any part of a neutrally buoyant cylinder to the deflection of its leading 
edge. This paper completes the description of cylinder motion by determining how 
the effects of perturbations in the position of the towing vessel propagate down the 
cable to excite the cylinder and hence perturb the sonar array, 

Since the cylinder is neutrally buoyant, its mean geometry under steady towing is 
simple : it is straight and horizontal. The cable, however, being heavier than water, 
is inclined to the direction of motion. In practice the tension in the cable is 
sufficiently large to ensure that over most of its length the mean cable geometry is 
a straight line, inclined at  the critical angle to the horizontal. This is the angle of 
cable inclination for which the mean normal drag and gravity forces on the cable 
balance. In considering linear perturbations of the cable from this steady-state 
position, the cylinder deflection determined in Part 1 acts as a downstream boundary 
condition for the cable motion. 

The stability of the cable and cylinder under constant towing conditions may be 
investigated by seeing whether free modes in which there is no perturbation in the 
position of the upstream end of the cable grow or decay in time. Numerical 
calculations showed the system to be stable for typical geometries. Since the cable 
and cylinder are stable, it is appropriate to investigate their response to forcing at  
the towing point. Transverse oscillations, in a horizontal direction perpendicular to 
the mean towing velocity, entirely decouple from in-plane vibrations. 

Meandering of the ship produces transverse oscillations of the cable and cylinder. 
For low frequencies these disturbances propagate down the cable with little change 
in amplitude, while higher-frequency disturbances are significantly attenuated. The 
details of the cable vibration are of limited interest. The primary interest is in how 
much vibration is transmitted from the ship to the cylinder and hence to the sonar 
array. This transfer function was found to depend strongly on the non-dimensional 
frequency wlJU and only weakly on the other cable parameters. The theory 
compares well with the experimental data of Kennedy & Strahan (1981). 

Perturbations in the ship’s speed generate oscillations of the cable and cylinder in 
a vertical plane. The propagation of these disturbances from the ship to the cylinder 
along the cable is effective at  all frequencies. At low frequencies the cable’s motion 
is quasi-static: the cable follows the displacement of the towing point with its 
inclination changing as changes in the towing speed alter the critical angle. At high 
frequencies any unsteady motion normal to the cable rapidly decays as the distance 
along the cable increases, while any in-line oscillation is unchanged. This leads to the 
vertical displacement a t  the leading edge of the array being a factor sin 8, cos 8, 
smaller than the perturbation in the ship’s position at  high frequencies. A numerical 
solution is required to determine the transfer of vibrations along the cable a t  a 
general frequency. This shows that perturbations in the ship’s position are most 
effectively transformed into vertical oscillations of the array at  a frequency of 
2.8U/lC.  The effect of the cable properties on transmission along the cable has 
been investigated. The transfer function depends on the value of the non-dimensional 
frequency wlJU.  Parameter changes, which increase the cable critical angle, increase 
the proportion of the forcing from the towing point transformed into vertical array 
motion at  a fixed value of wl,-.U. 

We have developed a simple means of determining the sonar array shape from 
linear changes in the ship’s towing velocity. In particular it has been possible to see 
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how the cable parameters and the frequency of oscillation affect the amplitude of the 
sonar array motion. This leads to an indication of how the cable geometry should be 
chosen to minimize array oscillation. 

This work has been carried out with the support of Topexpress Ltd and the 
Procurement Executive, Ministry of Defence. 

Appendix. Derivation of the equations of cable motion 

steady-state and fluctuating components in equations (2.12) and (2.13) 
The position vector of the cable element 1 a t  time t has been decomposed into 

r(1, t )  = ~ ( 1 ,  t )  + r'(1, t ) ,  
with 

The instantaneous tangential direction s can be determined from the derivative 
I 

ar/al to give 

-1 a7 - a< a t  . - a7 (;: az a r  az ai 
s =  (cos8,0,sin8)+ -cosS--sinO,- -sinO+-cosB 

- d8 
dl 

+ ( -6 sin g-7 cosQ,O, 6 cos8-7 sin 0) - , (A 3) 

6 ,  5, 7 are all small quantities and their products may be neglected. The use of the 
condition that s is a unit vector in (A 3)  shows that 

This is used in (2.14). With this relationship between a(/al  and 7,  s simplifies to 

s = (cos 6 , 0 ,  sin 6 )  + ( - sin 8, 0, cos g) 8' + (0, ag/az, 0). (A 5 )  

The angle 19' has been introduced, where 

Equation (A 5 )  demonstrates that 0' is the linear perturbation in the angle the cable 
makes with the positive x-axis. 

The velocity of the cable element may be found simply just by differentiating the 
position vector. With r' expressed as in (A 2), this gives 

u =  (-u,0,0)+(icos8--. isin8, <,isinO+-.icosB). (A 7) 

Differentiating again leads to 

A = (Ccose-v  sing, c, (sin8+rj'cos@). (A 8) 
The tangential components of the cable velocity and acceleration, v, and A,, may 

be calculated by forming the scalar product of u and A with the vector s given in 
(A 5) .  When these are substituted into the tangential momentum equation (2.4a),  
they lead to 

po c r m ;  [ = po(cr - 1)  7ca; g (sin S+ cos 80') + aT/az 

- p , ( ~ - ~ c o s 8 + ~  sin8).na,C,(-Ucosg+Usin88'+i). ( ~ 9 )  



Dynamics of towed flexible cylinders. Part 2 569 

After the mean equation (2.7) has been subtracted from this and the resulting 
equation linearized in the perturbations it reduces to 

v ~ a ;  [ = - 1 )  XU: 9 cos 00' + a T / a i  

- p o  Una, C,(U sin 6%' + ( 1  + cos2 6) (-sin 6 cos 84). (A 10) 

This equation relates the in-plane displacements to changes in tension. 
The normal momentum balance described by (2 .4b)  can be treated in a similar 

way. It is convenient to introduce two mutually perpendicular unit vectors n, and 
n2 defined by 

(A l l a )  

(A l l b )  n2 = (-sinQ-cos@', 0, cosS-sin88'). 

The scalar products of both these vectors with s (given in equation (A 5 ) )  is zero, 
showing that both n1 and n, are normal to the instantaneous position of the 
cable. 

The derivative as/al appears in (2 .4b) ,  and may be evaluated by differentiating 
(A 5 )  term by term; 

ai -7 n, = ( -cosel ,  - ac 1 ,  -sine- , 

as d -  
a i  dl 
- = (-sinS, 0, case) -(0+8')-(cos8, 0, 

The components of as/aZ, g ,  u and A in the directions of the two vectors n, and 
n, may be determined from the corresponding scalar product. This shows that the 
n, component of momentum balance is 

-a[ -a,[ 
ai a12 

p o ( v  + 1 )  nu; = -po(a - 1 )  nu: g sin 0- + T - 

-poa,U(C, sinB+nC,) c+U cos0- . (A 13) 

The remaining equation of motion is the n,-component of momentum balance 

i -7 a i  

equation ( 2 . 4 b ) ;  

a -  
ai p o ( v +  1 )  nu: = p o ( v -  1 )  nu: g(cos S- sin 60') + T -  (0 + 8') 

-po U,{C,(U sin S + u cos OW + 4) + ZC,(U + sin 6.i 

-cos6()}(Usine+U cos60'+4). (A 14) 

Once the mean normal momentum equation (2.8) is subtracted from (A 14) the 
resulting equation reduces to 

d@ -ad' 
po(v+l)na;.i j  = - p o ~ v - l ) n a ~ g s i n S 8 ' + ~ ' - + T -  

dl a1 
- 2p0 a, UC, sin S(4 + u cos 80') 

-po a,  UnC,( ( 1  + sin2 @) .i - sin 6 cos 8( + U cos SO'), (A 15) 

after linearization in the perturbation quantities. 
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0 is defined in (A 6 )  to be equal to ag/a l+ g d8/dl. The derivative, T i W / a l ,  therefore 
exDands as 

T - = T  -a8' - -+--+[$). a2g agd8 
ai ( a l z  a1 dl 

Equation (A 4) states that a [ / a l =  g d8/dl. The derivative T d28/d12 may be 
evaluated from the mean equations (2.7) and (2.8) to show that 

- d28 - d8 
T ,  = [ 2 p o ( a - l ) n a ~ g  sin8+pona,U2C, cos8+poa,U2(2C, sin8+nCN) C O S ~ ]  -. 

dl dl 
(A 17) 

With this expansion of T aellal and 8' rewritten explicitly as gd8/dl+ aq/al, equation 
(A 15) finally becomes 

p o ( a + l ) n a t y  = -po(cr- l )natgsm8 --5- +T'-+T -(Z - + g  (3') - 
' -(: f )  dl 

- d8 
dl 

+po nu, U2C, cos 8- 6 - 2 ~ ~  a,  uC, sin 8 

(1+sin28)4-sin8cos8i+U cos8- . (A 18) -"I ai 

The transverse displacement 5 is a solution of (A 13) and decouples from the in- 
plane displacements. ( and g are related to changes in tension and are determined by 
equations (A 4), (A 9) and (A 18). 
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